POZ

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Electronics and power electron	nics		
Field of study		Year/Semester	
Electrical engineering		3/5	
Area of study (specialization)		Profile of study	
		general academic	
Level of study		Course offered in	
First-cycle studies		polish	
Form of study		Requirements	
part-time		compulsory	
Number of hours			
Lecture	Laboratory class	ses Other (e.g. online)	
	20		
Tutorials	Projects/semina	ars	
Number of credit points			
Lecturers			
Responsible for the course/lecturer:		Responsible for the course/lecturer:	
Dr inż. Michał Krystkowiak		mgr inż. Amadeusz Gąsiorek	
mail: Michal.Krystkowiak@put.poznan.pl		mail: Amadeusz.Gasiorek@put.poznan.pl	
tel.: 616652388		Faculty of Automatic Control, Robotics and	
		Electrical Engineering	
Faculty of Automatic Control, Robotics and			
Electrical Engineering		ul. Piotrowo 3a, 60-965 Poznań	
ul. Piotrowo 3a, 60-965 Pozna	ń		

Prerequisites

Knowledge in the field of mathematics, physics and circuit theory at the level of the first year of study. Ability to understand and interpret the transmitted messages and effective self-education in the field related to the chosen field of study.

Course objective

Practical knowledge of propriety and basic characteristics of power electronics converters, rectifiers, AC/AC converters, AC/DC converters and inverters.

Course-related learning outcomes

Knowledge

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

1. Knows and understands the basic laws of electrical engineering, properties of elements of electrical circuits, has detailed knowledge of the theory of electrical circuits (for steady and transient states), knows and understands the theory of long line.

2. Has structured knowledge in the field of metrology and the properties and operation of modern measuring equipment.

3. Knows the structure and operation of electronic, optoelectronic and simple analog and digital electronic and power electronic devices, understands the processes occurring in their life cycle.

Skills

1. Is able to plan and carry out simulation and measurements of basic quantities characteristic of electrical systems; can present the results obtained in numerical and graphic form, interpret them and draw the right conclusions.

2. Is able to make a critical analysis and assessment of the functioning of existing electrical systems and devices, using appropriate methods and tools.

Social competences

1. Is aware of the need to initiate actions for the public interest, understands the various aspects and effects of electrical engineer activities, including environmental impact, and the associated responsibility for decisions.

2. Is aware of the importance of own work and the need to comply with the principles of professional ethics, is ready to comply with the principles of team work and take responsibility for jointly implemented tasks, as well as care for the achievements and traditions of the profession.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Assessment of knowledge and skills demonstrated during the written test-problem exam - based on the number of points obtained, evaluation of the exercise reports.

Programme content

Investigation of basic power electronic converters: 1-phase and 3-phase controlled rectifiers, alternating voltage regulators controlled symmetrically and unbalanced, pulse DC-DC regulators: thyristor and transistor. Investigation of 1- and 3-phase voltage inverters with PWM modulation. Simple active compensation systems.

Teaching methods

Laboratory

1. Continuous assessment, rewarding the increase in the ability to use known principles and methods.

2. Assessment of knowledge and skills related to the exercise, evaluation of the exercise report.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

1. Barlik R., Nowak M., Technika tyrystorowa, Wydawnictwa Naukowo-Techniczne, Warszawa 1997.

2. Frąckowiak L., Januszewski S., Energoelektronika. Cz. 1, Półprzewodnikowe przyrządy i moduły energoelektroniczne, Wydawnictwo Politechniki Poznańskiej, Poznań 2001.

3. Mikołajuk K., Podstawy analizy obwodów energoelektronicznych, Państwowe Wydawnictwo Naukowe, Warszawa 1998.

4. Mohan N., Undeland N., Robins W., Power Electronics, Jon Wiley & Sons Inc., New York 1999.

5. Tunia H., Smirnow A., Nowak M., Barlik R., Układy energoelektroniczne. Obliczanie, modelowanie, projektowanie, Wydawnictwa Naukowo-Techniczne, Warszawa 1982.

Additional

1. Frąckowiak L., Energoelektronika. Cz. 2, Wydawnictwo Politechniki Poznańskiej, Poznań 2000.

2. Kaźmierkowski M., Krishnan R., Blaabjerg H., Control in Power Electronics, Academic Press, Amsterdam 2002.

3. Piróg S., Energoelektronika, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków 1998.

4. Strzelecki R., Supronowicz H., Współczynnik mocy w systemach zasilania prądu przemiennego i metody jego poprawy, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2000.

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for	20	1,0
laboratory classes/tutorials, preparation for tests/exam,		
preparation of the report - reports on the implemented		
laboratory exercise) ¹		

¹ delete or add other activities as appropriate